VoR-Tree: R-trees with Voronoi Diagrams for Efficient Processing of Spatial Nearest Neighbor Queries

نویسندگان

  • Mehdi Sharifzadeh
  • Cyrus Shahabi
چکیده

A very important class of spatial queries consists of nearestneighbor (NN) query and its variations. Many studies in the past decade utilize R-trees as their underlying index structures to address NN queries efficiently. The general approach is to use R-tree in two phases. First, R-tree’s hierarchical structure is used to quickly arrive to the neighborhood of the result set. Second, the R-tree nodes intersecting with the local neighborhood (Search Region) of an initial answer are investigated to find all the members of the result set. While R-trees are very efficient for the first phase, they usually result in the unnecessary investigation of many nodes that none or only a small subset of their including points belongs to the actual result set. On the other hand, several recent studies showed that the Voronoi diagrams are extremely efficient in exploring an NN search region, while due to lack of an efficient access method, their arrival to this region is slow. In this paper, we propose a new index structure, termed VoR-Tree that incorporates Voronoi diagrams into R-tree, benefiting from the best of both worlds. The coarse granule rectangle nodes of R-tree enable us to get to the search region in logarithmic time while the fine granule polygons of Voronoi diagram allow us to efficiently tile or cover the region and find the result. Utilizing VoR-Tree, we propose efficient algorithms for various Nearest Neighbor queries, and show that our algorithms have better I/O complexity than their best competitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indexing the Solution Space: A New Technique for Nearest Neighbor Search in High-Dimensional Space

ÐSimilarity search in multimedia databases requires an efficient support of nearest-neighbor search on a large set of highdimensional points as a basic operation for query processing. As recent theoretical results show, state of the art approaches to nearest-neighbor search are not efficient in higher dimensions. In our new approach, we therefore precompute the result of any nearest-neighbor se...

متن کامل

An Efficient Method for k Nearest Neighbor Searching in Obstructed Spatial Databases

Currently, there has been an increasing development in the area of location-based service. An important type of query in this area is k nearest neighbor (kNN) query, which retrieves the top k nearest neighbors based on the user's position. Although a wide spectrum of work has been conducted on this query type, most of these studies focus on the ideal Euclidean plane without obstacles considered...

متن کامل

Voronoi-Neighboring Regions Tree for Efficient Processing of Location Dependent Queries

As a data management technique, indexing aims to judicious organization of data allowing efficient query processing. In the context of location based services (LBSs), indexing techniques are, substantially, affected by location dependency and modes of data access. This paper focuses on the processing of location dependent queries (nearest neighbors and range queries) based on indexing structure...

متن کامل

Probabilistic Voronoi Diagrams for Probabilistic Moving Nearest Neighbor Queries

Article history: Received 9 November 2010 Received in revised form 4 February 2012 Accepted 6 February 2012 Available online 21 February 2012 A large spectrum of applications such as location based services and environmental monitoring demand efficient query processing on uncertain databases. In this paper, we propose the probabilistic Voronoi diagram (PVD) for processing moving nearest neighbo...

متن کامل

Efficient k Nearest Neighbor Queries on Remote Spatial Databases Using Range Estimation (Draft Version)

K-Nearest Neighbor (k-NN) queries are used in GIS and CAD/CAM applications to find the k spatial objects closest to some given query points. Most previous k-NN research has assumed that the spatial databases to be queried are local, and that the query processing algorithms have direct access to their spatial indices, e.g. R-trees. Clearly, this assumption does not hold when k-NN queries are dir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PVLDB

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010